Some gregarious kite decompositions of complete equipartite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some gregarious kite decompositions of complete equipartite graphs

A k-cycle decomposition of a multipartite graph G is said to be gregarious if each k-cycle in the decomposition intersects k distinct partite sets of G. In this paper we prove necessary and sufficient conditions for the existence of such a decomposition in the case where G is the complete equipartite graph, having n parts of size m, and either n ≡ 0, 1 (mod k), or k is odd and m ≡ 0 (mod k). As...

متن کامل

Resolvable gregarious cycle decompositions of complete equipartite graphs

The complete multipartite graph Kn(m) with n parts of size m is shown to have a decomposition into n-cycles in such a way that each cycle meets each part of Kn(m); that is, each cycle is said to be gregarious. Furthermore, gregarious decompositions are given which are also resolvable. © 2007 Elsevier B.V. All rights reserved.

متن کامل

ON DECOMPOSITIONS OF THE COMPLETE EQUIPARTITE GRAPHS Kkm(2t) INTO GREGARIOUS m-CYCLES

For an even integer m at least 4 and any positive integer t, it is shown that the complete equipartite graph Kkm(2t) can be decomposed into edge-disjoint gregarious m-cycles for any positive integer k under the condition satisfying (m−1)+3 4m < k. Here it will be called a gregarious cycle if the cycle has at most one vertex from each partite set.

متن کامل

Cycle decompositions of λ-fold complete equipartite graphs

In this paper we give constructions for various new fixed length cycle decompositions of λ-fold complete equipartite graphs. In particular, we determine necessary and sufficient conditions for the existence of such a decomposition in the case where the cycle length is prime.

متن کامل

A Note on Decomposition of Complete Equipartite Graphs into Gregarious 6-cycles

In [8], it is shown that the complete multipartite graph Kn(2t) having n partite sets of size 2t, where n ≥ 6 and t ≥ 1, has a decomposition into gregarious 6-cycles if n ≡ 0, 1, 3 or 4 (mod 6). Here, a cycle is called gregarious if it has at most one vertex from any particular partite set. In this paper, when n ≡ 0 or 3 (mod 6), another method using difference set is presented. Furthermore, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2013

ISSN: 0012-365X

DOI: 10.1016/j.disc.2012.10.017